Towards adversarial realism and robust learning for IoT intrusion detection and classification

نویسندگان

چکیده

The Internet of Things (IoT) faces tremendous security challenges. Machine learning models can be used to tackle the growing number cyber-attack variations targeting IoT systems, but increasing threat posed by adversarial attacks restates need for reliable defense strategies. This work describes types constraints required a realistic example and proposes methodology trustworthy robustness analysis with evasion attack vector. proposed was evaluate three supervised algorithms, Random Forest (RF), Extreme Gradient Boosting (XGB), Light (LGBM), one unsupervised algorithm, Isolation (IFOR). Constrained examples were generated Adaptative Perturbation Pattern Method (A2PM), performed against created regular training. Even though RF least affected in binary classification, XGB consistently achieved highest accuracy multi-class classification. obtained results evidence inherent susceptibility tree-based algorithms ensembles demonstrates benefits training design approach more robust network intrusion detection

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigating the effect of motivation and attitude towards learning english, learning style preferences and gender on iranian efl learners proficiency

تحقیق حاضر به منظور بررسی تاثیر انگیزه و نگرش نسبت به یادگیری زبان انگلیسی، ترجیحات سبک یادگیری و جنسیت بر بسندگی فراگیران ایرانی زبان انگلیسی انجام شد. برای این منظور، 154 فراگیر ایرانی زبان انگلیسی در این تحقیق شرکت کردند. سه ابزار جمع آوری داده ها شامل آزمون تعیین سطح بسندگی زبان انگلیسی آکسفورد، پرسشنامه ترجیحات سبک یادگیری براچ و پرسشنامه انگیزه و نگرش نسبت به یادگیری زبان انگلیسی به م...

Towards Robust Detection of Adversarial Examples

Though the recent progress is substantial, deep learning methods can be vulnerable to the elaborately crafted adversarial samples. In this paper, we attempt to improve the robustness by presenting a new training procedure and a thresholding test strategy. In training, we propose to minimize the reverse cross-entropy, which encourages a deep network to learn latent representations that better di...

متن کامل

Intrusion Detection in IOT based Networks Using Double Discriminant Analysis

Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the norma...

متن کامل

An Efficient Adversarial Learning Strategy for Constructing Robust Classification Boundaries

Traditional classification methods assume that the training and the test data arise from the same underlying distribution. However in some adversarial settings, the test set can be deliberately constructed in order to increase the error rates of a classifier. A prominent example is email spam where words are transformed to avoid word-based features embedded in a spam filter. Recent research has...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Des Télécommunications

سال: 2023

ISSN: ['0003-4347', '1958-9395']

DOI: https://doi.org/10.1007/s12243-023-00953-y